skip to main content


Search for: All records

Creators/Authors contains: "Laughman, Brian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract This paper addresses the compressible nonlinear dynamics accompanying increasing mountain wave (MW) forcing over the southern Andes and propagation into the mesosphere and lower thermosphere (MLT) under winter conditions. A stretched grid provides very high resolution of the MW dynamics in a large computational domain. A slow increase of cross-mountain winds enables MWs to initially break in the mesosphere and extend to lower and higher altitudes thereafter. MW structure and breaking is strongly modulated by static mean and semidiurnal tide fields exhibiting a critical level at ~114 km for zonal MW propagation. Varying vertical group velocities for different zonal wavelengths λ x yield initial breaking in the lee of the major Andes peaks for λ x ~ 50 km, and extending significantly upstream for larger λ x approaching the critical level at later times. The localized extent of the Andes terrain in latitude leads to “ship wave” responses above the individual peaks at earlier times, and a much larger ship-wave response at 100 km and above as the larger-scale MWs achieve large amplitudes. Other responses above regions of MW breaking include large-scale secondary gravity waves and acoustic waves that achieve very large amplitudes extending well into the thermosphere. MW breaking also causes momentum deposition that yields local decelerations initially, which merge and extend horizontally thereafter and persist throughout the event. Companion papers examine the associated momentum fluxes, mean-flow evolution, gravity wave–tidal interactions, and the MW instability dynamics and sources of secondary gravity waves and acoustic waves. 
    more » « less
  2. Abstract

    Profiles of the electron number density in the ionosphere are observed at the Arecibo Radio Observatory in Puerto Rico on a regular basis. Here, we report on recent observations showing anomalous irregularities in the density profiles at altitudes >~300 km. The irregularities occurred during a period of “mid-latitude spreadF,” a space-weather phenomenon relatively common at middle latitudes in summer months characterized by instability and electron density irregularities in the bottomside of the ionosphericFlayer. Remarkably, electron density irregularities extended well above the layer, through the ionization peak and into the topside which is regarded as being stable. Neither the neutral atmosphere nor the ionosphere is thought to be able to support turbulence locally at this altitude. A numerical simulation is used to illustrate how a combination of atmospheric and plasma dynamics driven at lower altitudes could explain the phenomenon.

     
    more » « less
  3. Abstract

    Dong et al. (2020,https://doi.org/10.1029/2019JD030691) employed a new compressible model to examine gravity wave (GW) self‐acceleration dynamics, instabilities, secondary gravity wave (SGW) generation, and mean forcing for GW packets localized in two dimensions (2D). This paper extends the exploration of self‐acceleration dynamics to a GW packet localized in three dimensions (3D) propagating into tidal winds in the mesosphere and thermosphere. As in the 2D packet responses, 3D GW self‐acceleration dynamics are found to be significant and include 3D GW phase distortions, stalled GW vertical propagation, local instabilities, and SGW and acoustic wave generation. Additional 3D responses described here include refraction by tidal winds, localized 3D instabilities, asymmetric SGW propagation, reduced SGW and acoustic wave responses at higher altitudes relative to 2D responses, and forcing of transient, large‐scale, 3D mean responses that may have implications for chemical and microphysical processes operating on longer time scales.

     
    more » « less
  4. Abstract

    An anelastic numerical model is used to study the influences of fine structure (FS) in the wind and stability profiles on gravity wave (GW) propagation in the Mesosphere and Lower Thermosphere (MLT). Large amplitude GWs interacting with FS, that is, thin regions of enhanced wind and stability, evolve very differently depending on the precise vorticity source and sink terms for small‐scale motions induced by the FS gradients. The resulting small‐scale dynamics are deterministic, promoting local instabilities, dissipation, and momentum deposition at locations and orientations determined by the initial FS. The resulting momentum depositions yield significant changes to the background wind structure, having scales and amplitudes comparable to the effects of large‐scale features in the ambient atmosphere. The deterministic nature of the large‐scale impacts further suggests that they can be estimated without fully resolving the underlying instability dynamics. Given the significant amplitudes and ubiquitous occurrence of FS throughout the atmosphere, the influences of these important and diverse flow evolutions merit inclusion in broader modeling efforts.

     
    more » « less